Secure Web Programming Techniques

Build security into your applications

by Alan Seiden

N “CONFIGURE A SAFE ENVIRONMENT

for PHP Web Apps” (December 2007, article

21096 at SystemiNetwork.com), I showed how to

configure a secure environment in Zend Core for
i5/0S. Now we’ll delve into the next layer of security:
your PHP application itself. Specifically, you'll learn
how to protect your web applications from three of the
most common attack techniques: SQL injection, cross-
site scripting, and cross-site request forgery.

Three Secure Practices
Hackers often penetrate application security by pass-
‘ing bogus input through form fields and URLs, or
by hijacking the JavaScript your application outputs
to user browsers. Have you tested how well your web
application handles tricky input, such as names that
contain apostrophes or text full of JavaScript code? If
you haven’t, then your site may be vulnerable to both
accidents and hackers.

Fortunately, you can protect your data and users with
the following three practices:

* filter input
e “prepare” SQL (MySQL and DB2) statements
* encode/escape HTML output

Although these three steps aren’t the only strategies
for application security, they cover 99 percent of the
attacks that typically take down websites or repurpose
them to evil ends. By consistently applying these three
steps, you'll head off such popular attacks as SQL
injection, cross-site scripting, and cross-site request
forgery. These safeguards work with PHP in any envi-
ronment, including Zend Core for i5/0S.

. Filter Input

| Filtering is the first practice to learn because it’s your

| application’s earliest chance to reject an attack. If mali-
cious or unexpected input enters your application’s
inner processing, the problem may go undetected till
damage is done. Therefore, applications should inspect
input and reject any that is not totally correct. This

Networking & S stems Management -

50 PROVIP System iINEWS APRIL 2008

practice is known as filtering input.

Think of filtering as the skin on your application’s
“body.” Just as your own skin acts as a barrier to pol-
lutants and infection, filtering keeps out bad data. If
invalid input should pierce the “skin,” the application
may, with effort, neutralize the threat, but not so neatly
or easily.

Filtering limits all types of attacks and errors, because
it restricts input to just what you expect and what you
believe the application needs.

When you filter input, you check to see that it con-
tains correct data. For example, you might verify that

* a numeric value is really numeric

* an e-mail address has a valid e-mail format

e an application-defined code is one of the acceptable
values you've defined

To filter consistently, you need to know which input
has been filtered and which has not. Naming conven-
tions can help. A popular convention, used by Chris
Shiflett in his book Essential PHP Security (O’Reilly,
2005), suggests that you collect filtered input in an
array called $clean. Data in $clean can be trusted;
other data can’t.

For example, Figure 1 shows how to filter an e-mail
address that was submitted by a web form’s POST
method, checking the e-mail format with PHP’s filter_
input() function.

As Figure 1 shows, you should focus first on filter-
ing PHP’s $_GET and $_POST arrays, because these
come directly from user requests.

In addition, for critical applications, you might filter
less obvious sources of input:

¢ fields retrieved from databases (even your trusty DB2
database — you can’t guarantee that it contains only
filtered data)

® XML received from other computers

* web server variables, such as $_SERVER [HTTP_
HOST'], that come from the user’s request (and
therefore are unpredictable)

SystemiNetwork.com

